# A Theory of Dynamic Product Awareness and Targeted Advertising\*

Laurent Cavenaile

University of Toronto

Murat Alp Celik University of Toronto Jesse Perla

University of British Columbia

#### Pau Roldan-Blanco

Banco de España and CEMFI

22nd Macroeconomic Dynamics Workshop University of Bologna

December 21, 2023

\* The views expressed in this presentation are the authors' and may not represent those of Banco de España or the Eurosystem.

# Motivation

- Firms have long used **advertising** to spread product awareness.
  - Traditional methods: radio and TV ads, billboards, door-to-door sales, ...
  - Targeted methods: mailing lists, customer catalogs, online ads, ...
- Advances in technology (social networks, search engines, big data, ...) have increased efficiency of ADV.
  - Share of digital in total ADV spending → From 4% in 2000 to 57% in 2020 (70% expected in 2023).
- Do these changes have an effect on how customers are reached and how markets are structured?

This paper:

New information-based theory of product lifecycles to understand ...

(i) ... how expanding consumer choice sets affect market and macro dynamics;

(ii) ... how better ADV technologies affect competition, sorting, markups, misallocation, welfare.

Cavenaile, Celik, Perla and Roldan-Blanco

# Motivation

- Firms have long used **advertising** to spread product awareness.
  - Traditional methods: radio and TV ads, billboards, door-to-door sales, ...
  - Targeted methods: mailing lists, customer catalogs, online ads, ...
- Advances in technology (social networks, search engines, big data, ...) have increased efficiency of ADV.
  - Share of digital in total ADV spending → From 4% in 2000 to 57% in 2020 (70% expected in 2023).
- Do these changes have an effect on how customers are reached and how markets are structured?

### This paper:

New information-based theory of product lifecycles to understand ...

- (i) ... how expanding consumer choice sets affect market and macro dynamics;
- (ii) ... how better ADV technologies affect competition, sorting, markups, misallocation, welfare.

### 1. Theory: A GE Model of Dynamic Product Awareness

- Key features:
  - I Heterogeneous consumers → (i) idiosyncratic tastes (exogenous); (ii) incomplete awareness sets (endogenous).
  - $\overline{a}$  Homogeneous firms ightarrow Take advantage of limited awareness and exploit customers through markups.
- Two advertising technologies:
  - Traditional → Increase consumer contact rate ⇒ Consumers find preferred product faster (↑ consumer sorting).
  - 2 Targeted  $\rightarrow$  Find high-valuation consumers with higher likelihood ( $\uparrow$  match quality but also  $\uparrow$  segmentation).

### 2. Application: The Rise of Targeted Advertising (United States, 2005-2014)

- $\blacksquare$  Two calibrations  $\rightarrow$  Match the increase in share of digital ADV ( $\uparrow$  targeting) in the period 2005-2014.
- In the 2014 calibration  $\rightarrow$  Both forms of ADV more cost-effective, but targeting now relatively cheaper.
  - $\blacksquare$  ... match quality  $\uparrow$   $\longrightarrow$  Higher-quality matches formed with fewer connections (customer misallocation  $\downarrow$ ).
  - I ... consumer sorting  $\downarrow ~
    ightarrow$  Awareness expands more slowly, more segmentation  $~\Rightarrow$  market power  $\uparrow$

#### Counterfactual: Had ADV technology not improved, welfare would have been higher despite worse sorting.

- 1. Theory: A GE Model of Dynamic Product Awareness
- Key features:
  - 1 Heterogeneous consumers  $\rightarrow$  (i) idiosyncratic tastes (exogenous); (ii) incomplete awareness sets (endogenous).
  - 2 Homogeneous firms  $\rightarrow$  Take advantage of limited awareness and exploit customers through markups.
- Two advertising technologies:
  - 1 Traditional  $\rightarrow$  Increase consumer contact rate  $\Rightarrow$  Consumers find preferred product faster ( $\uparrow$  consumer sorting).
  - **2** Targeted  $\rightarrow$  Find high-valuation consumers with higher likelihood ( $\uparrow$  match quality but also  $\uparrow$  segmentation).

### 2. Application: The Rise of Targeted Advertising (United States, 2005-2014)

• Two calibrations  $\rightarrow$  Match the increase in share of digital ADV († targeting) in the period 2005-2014.

In the 2014 calibration  $\rightarrow$  Both forms of ADV more cost-effective, but targeting now relatively cheaper.

 $\blacksquare$  ... match quality  $\uparrow$   $\longrightarrow$  Higher-quality matches formed with fewer connections (customer misallocation  $\downarrow$ ).

I ... consumer sorting  $\downarrow ~
ightarrow$  Awareness expands more slowly, more segmentation  $~\Rightarrow$  market power  $\uparrow$ 

#### Counterfactual: Had ADV technology not improved, welfare would have been higher despite worse sorting.

- 1. Theory: A GE Model of Dynamic Product Awareness
- Key features:
  - 1 Heterogeneous consumers  $\rightarrow$  (i) idiosyncratic tastes (exogenous); (ii) incomplete awareness sets (endogenous).
  - 2 Homogeneous firms  $\rightarrow$  Take advantage of limited awareness and exploit customers through markups.
- Two advertising technologies:
  - **1** Traditional  $\rightarrow$  Increase consumer contact rate  $\Rightarrow$  Consumers find preferred product faster ( $\uparrow$  consumer sorting).
  - **2** Targeted  $\rightarrow$  Find high-valuation consumers with higher likelihood ( $\uparrow$  match quality but also  $\uparrow$  segmentation).
- 2. Application: The Rise of Targeted Advertising (United States, 2005-2014)
- Two calibrations  $\rightarrow$  Match the increase in share of digital ADV ( $\uparrow$  targeting) in the period 2005-2014.
- In the 2014 calibration  $\rightarrow$  Both forms of ADV more cost-effective, but targeting now relatively cheaper.
  - $\blacksquare \ ... \ \text{match quality} \uparrow \qquad \rightarrow \text{Higher-quality matches formed with fewer connections (customer misallocation $\downarrow$)}.$
  - ... consumer sorting  $\downarrow \rightarrow$  Awareness expands more slowly, more segmentation  $\Rightarrow$  market power  $\uparrow$

Counterfactual: Had ADV technology not improved, welfare would have been higher despite worse sorting.

- 1. Theory: A GE Model of Dynamic Product Awareness
- Key features:
  - 1 Heterogeneous consumers  $\rightarrow$  (i) idiosyncratic tastes (exogenous); (ii) incomplete awareness sets (endogenous).
  - 2 Homogeneous firms  $\rightarrow$  Take advantage of limited awareness and exploit customers through markups.
- Two advertising technologies:
  - **1** Traditional  $\rightarrow$  Increase consumer contact rate  $\Rightarrow$  Consumers find preferred product faster ( $\uparrow$  consumer sorting).
  - **2** Targeted  $\rightarrow$  Find high-valuation consumers with higher likelihood ( $\uparrow$  match quality but also  $\uparrow$  segmentation).
- 2. Application: The Rise of Targeted Advertising (United States, 2005-2014)
- Two calibrations  $\rightarrow$  Match the increase in share of digital ADV ( $\uparrow$  targeting) in the period 2005-2014.
- In the 2014 calibration  $\rightarrow$  Both forms of ADV more cost-effective, but targeting now relatively cheaper.
  - $\blacksquare \ ... \ match \ quality \uparrow \qquad \rightarrow \ Higher-quality \ matches \ formed \ with \ fewer \ connections \ (customer \ misallocation \ \downarrow).$
  - ... consumer sorting  $\downarrow \rightarrow$  Awareness expands more slowly, more segmentation  $\Rightarrow$  market power  $\uparrow$

### **Counterfactual:** Had ADV technology not improved, welfare would have been higher despite worse sorting.

# **Related Literature**

#### Customer Capital in Trade and Macro:

Fishman and Rob (2003), Bergemann and Välimäki (2006), Luttmer (2006), Arkolakis (2010, 2016), Dinlersoz and Yorukoglu (2012), Drozd and Nosal (2012), Gourio and Rudanko (2014), Fitzgerald, Haller and Yedid-Levi (2017), Paciello, Pozzi and Trachter (2019), Afrouzi, Drenik and Kim (2020), Roldan-Blanco and Gilbukh (2021), Ignaszak and Sedláček (2021), Einav, Klenow, Levin and Murciano-Goroff (2022).

Contribution: New information-based interpretation.

#### Intangibles and Market Power:

Aghion, Bergeaud, Boppart, Klenow and Li (2019), Cavenaile, Celik, Tian (2022), Weiss (2022), De Ridder (2022).

Contribution: New mechanism operating through the extensive-margin of demand.

#### Advertising in Economics:

Dorfman and Steiner (1954), Butters (1977), Becker and Murphy (1993), Bagwell (2007), Goeree (2008), Dinlersoz and Yorukoglu (2012), Guthmann (2020), Greenwood, Ma and Yorukoglu (2021), Rachel (2021), Cavenaile and Roldan-Blanco (2021), Argente, Fitzgerald, Moreira and Priolo (2021), Klein and Şener (2022), Baslandze, Greenwood, Marto and Moreira (2022).

Contribution: Focus on targeted vs non-targeted ADV, feature new GE effects.

# **Model Assumptions**

# Assumptions I: Demographics

- **Consumers:** Measure-one continuum, with preferences over a single final good.
- Final good: Assembled from a continuum mass  $M_t > 0$  (endogenous) of product categories.
  - Category  $m \in [0, M_t]$  is populated by a finite number  $N \in \mathbb{Z}_+$  of identical firms  $i \in \mathcal{I} \equiv \{1, 2, ..., N\}$ .
  - A "product" is uniquely indexed by  $(i, m) \in \mathcal{I} \times [0, M_t]$ .

### Product market dynamics:

- Each instant  $t \in \mathbb{R}_+$ , an "innovator" invests resources to find a blueprint for a new product category.
- All N firms enter together upon product creation, and all exit together at rate  $\delta_M > 0$  (obsolescence).

### Consumer heterogeneity:

- 1 ... in preferences:
  - Permanent idiosyncratic preferences over (i, m) products,  $\xi_{imj} \sim \text{Gumbel}(0, 1)$ .
  - Distribution of preferences is independent across product categories, i.e.  $\xi_{imi} \perp \xi_{im'}, \forall m \neq m'$ .
- 2 ... in awareness:

Consumer j is aware of, and can only consume from, a subset of products from each category.

# Assumptions I: Demographics

- **Consumers:** Measure-one continuum, with preferences over a single final good.
- Final good: Assembled from a continuum mass  $M_t > 0$  (endogenous) of product categories.
  - Category  $m \in [0, M_t]$  is populated by a finite number  $N \in \mathbb{Z}_+$  of identical firms  $i \in \mathcal{I} \equiv \{1, 2, ..., N\}$ .
  - A "product" is uniquely indexed by  $(i, m) \in \mathcal{I} \times [0, M_t]$ .

### Product market dynamics:

- Each instant  $t \in \mathbb{R}_+$ , an "innovator" invests resources to find a blueprint for a new product category.
- All *N* firms enter together upon product creation, and all exit together at rate  $\delta_M > 0$  (obsolescence).

### Consumer heterogeneity:

- 1 ... in preferences:
  - Permanent idiosyncratic preferences over (i, m) products,  $\xi_{imj} \sim \text{Gumbel}(0, 1)$ .
  - Distribution of preferences is independent across product categories, i.e.  $\xi_{imj} \perp \xi_{im'j}$ ,  $\forall m \neq m'$ .
- 2 ... in awareness:
  - Consumer *j* is aware of, and can only consume from, a subset of products from each category.

■ Preferences: Consumer *j* ∈ [0, 1]:

$$\max \int_{0}^{+\infty} e^{-\rho t} \frac{C_{lt}^{1-\gamma}}{1-\gamma} dt, \qquad \text{with } C_{lt} = \left[ \int_{0}^{M_t} \left( \sum_{i \in A_{mit}} \overline{\Gamma} e^{\sigma \xi_{imj}} c_{imjt} \right)^{\frac{\kappa}{\kappa}} dm \right]^{\frac{\kappa}{\kappa-1}}$$

where

- $c_{imjt} > 0$  is the quantity purchased of product (i, m).
- $A_{mit} \subseteq \mathcal{I} = \{1, \ldots, N\}$  is the consumer's awareness set, which evolves endogenously via ADV.

**Technology:** Identical firms  $i \in \{1, ..., N\}$ , use a common Cobb-Douglas technology (w/ constant TFP):

$$y_{imt} = z k_{imt}^{\alpha} l_{imt}^{1-\alpha},$$
 with  $z > 0, \alpha \in (0, 1]$ 

### Information:

- Firm cannot observe  $A_{mjt}$  and  $\xi_{imj}$  for any consumer  $j \in [0, 1]$ .
- But... they have complete information on:
  - Joint distribution over  $(A_{mit})$  sets that contain the firm and their corresponding  $(\xi_{imi})$  shifters.
  - 2 Actions of other firms within the product category  $\rightarrow$  Compete in prices (à la Bertrand).

Cavenaile, Celik, Perla and Roldan-Blanco

**Preferences:** Consumer  $j \in [0, 1]$ :

$$\max \int_{0}^{+\infty} e^{-\rho t} \frac{C_{jt}^{1-\gamma}}{1-\gamma} dt, \qquad \text{with } C_{jt} = \left[ \int_{0}^{M_{t}} \left( \sum_{i \in A_{mjt}} \overline{\Gamma} e^{\sigma \xi_{imj}} c_{imjt} \right)^{\frac{\kappa-1}{\kappa}} dm \right]^{\frac{\kappa}{\kappa-1}}$$

where

- $C_{imjt} > 0$  is the quantity purchased of product (i, m).
- $A_{mjt} \subseteq \mathcal{I} = \{1, \dots, N\}$  is the consumer's awareness set, which evolves endogenously via ADV.

**Technology:** Identical firms  $i \in \{1, ..., N\}$ , use a common Cobb-Douglas technology (w/ constant TFP):

$$y_{imt} = z k_{imt}^{\alpha} l_{imt}^{1-\alpha},$$
 with  $z > 0, \alpha \in (0, 1)$ 

### Information:

- Firm cannot observe  $A_{mit}$  and  $\xi_{imj}$  for any consumer  $j \in [0, 1]$ .
- But... they have complete information on:
  - I Joint distribution over  $(A_{mit})$  sets that contain the firm and their corresponding  $(\xi_{imi})$  shifters.
  - 2 Actions of other firms within the product category  $\rightarrow$  Compete in prices (à la Bertrand).

Cavenaile, Celik, Perla and Roldan-Blanco

**Preferences:** Consumer  $j \in [0, 1]$ :

$$\max \int_{0}^{+\infty} e^{-\rho t} \frac{C_{jt}^{1-\gamma}}{1-\gamma} dt, \qquad \text{with } C_{jt} = \left[ \int_{0}^{M_{t}} \left( \sum_{i \in A_{mjt}} \overline{\Gamma} e^{\sigma \xi_{imj}} c_{imjt} \right)^{\frac{\kappa-1}{\kappa}} dm \right]^{\frac{\kappa}{\kappa-1}}$$

where

- $C_{imjt} > 0$  is the quantity purchased of product (i, m).
- $A_{mit} \subseteq \mathcal{I} = \{1, \dots, N\}$  is the consumer's awareness set, which evolves endogenously via ADV.

**Technology:** Identical firms  $i \in \{1, ..., N\}$ , use a common Cobb-Douglas technology (w/ constant TFP):

$$y_{imt} = z \, k_{imt}^{\alpha} \, l_{imt}^{1-\alpha}, \qquad \text{with } z > 0, \alpha \in (0, 1]$$

### Information:

- Firm cannot observe  $A_{mit}$  and  $\xi_{imj}$  for any consumer  $j \in [0, 1]$ .
- But... they have complete information on:
  - I Joint distribution over  $(A_{mit})$  sets that contain the firm and their corresponding  $(\xi_{imi})$  shifters.
  - 2 Actions of other firms within the product category  $\rightarrow$  Compete in prices (à la Bertrand).

**Preferences:** Consumer  $j \in [0, 1]$ :

$$\max \int_{0}^{+\infty} e^{-\rho t} \frac{C_{jt}^{1-\gamma}}{1-\gamma} dt, \qquad \text{with } C_{jt} = \left[ \int_{0}^{M_{t}} \left( \sum_{i \in A_{mjt}} \overline{\Gamma} e^{\sigma \xi_{imj}} c_{imjt} \right)^{\frac{\kappa-1}{\kappa}} dm \right]^{\frac{\kappa}{\kappa-1}}$$

where

- $C_{imjt} > 0$  is the quantity purchased of product (i, m).
- $A_{mit} \subseteq \mathcal{I} = \{1, \dots, N\}$  is the consumer's awareness set, which evolves endogenously via ADV.

**Technology:** Identical firms  $i \in \{1, ..., N\}$ , use a common Cobb-Douglas technology (w/ constant TFP):

$$y_{imt} = z k_{imt}^{\alpha} l_{imt}^{1-\alpha}$$
, with  $z > 0, \alpha \in (0, 1)$ 

### Information:

- Firm cannot observe  $A_{mjt}$  and  $\xi_{imj}$  for any consumer  $j \in [0, 1]$ .
- But... they have complete information on:
  - Joint distribution over  $(A_{mit})$  sets that contain the firm and their corresponding  $(\xi_{imi})$  shifters.
  - **2** Actions of other firms within the product category  $\rightarrow$  Compete in prices (à la Bertrand).

### Traditional advertising:

- Choose contact rate of new customers,  $\theta > 0$ , constant over time and across firms.
- Determines evolution of awareness sets ("urn-ball" without replacement). 💽 Awaress Law of Motor

### 2 Targeted advertising:

- Recall  $\rightarrow$  Tastes for *population* of consumers are  $\xi_{imj} \sim$  Gumbel(0, 1).
- At age  $a \geq$  0, tastes of consumers *who are aware* of firm i are  $\sim$  Gumbel( In  $(\mu_i(a))$  , 1 )
  - Firms only choose  $\mu_{0,i} \equiv \mu_i(0) \ge 1$ , at age a = 0.
  - Law of motion for targeting:

$$\ln\left(\mu_i(\boldsymbol{a})
ight) = \ln\left(\mu_{0,i}
ight) \Big(1 - \underbrace{\boldsymbol{s}_i(\boldsymbol{a})}_{\boldsymbol{a}_i}\Big),$$

Proportion of awareness sets that contain the firm

### ADV costs per firm (paid in units of final good) $\rightarrow d(\theta, \mu_0) = \nu \theta^2 + \eta (\mu_0 - 1)^2$ , with $\nu, \eta > 0$ .

Network saturation

### 1 Traditional advertising:

- Choose contact rate of new customers,  $\theta > 0$ , constant over time and across firms.
- Determines evolution of awareness sets ("urn-ball" without replacement). Awareness Law of Motion

### 2 Targeted advertising:

- Recall  $\rightarrow$  Tastes for *population* of consumers are  $\xi_{imj} \sim$  Gumbel(0, 1).
- At age  $a\geq$  0, tastes of consumers *who are aware* of firm i are  $\sim$  Gumbel( In  $(\mu_i(a))$  , 1 )
  - Firms only choose  $\mu_{0,i} \equiv \mu_i(0) \ge 1$ , at age a = 0.
  - Law of motion for targeting:

$$\ln \left( \mu_i(\boldsymbol{a}) \right) = \ln \left( \mu_{0,i} \right) \left( 1 - \underbrace{\boldsymbol{s}_i(\boldsymbol{a})}_{i} \right),$$

Proportion of awareness sets that contain the firm

### ADV costs per firm (paid in units of final good) $\rightarrow d(\theta, \mu_0) = \nu \theta^2 + \eta (\mu_0 - 1)^2$ , with $\nu, \eta > 0$ .

Network saturation

### Traditional advertising:

- Choose contact rate of new customers,  $\theta > 0$ , constant over time and across firms.
- Determines evolution of awareness sets ("urn-ball" without replacement). Awareness Law of Motion

### 2 Targeted advertising:

- Recall  $\rightarrow$  Tastes for *population* of consumers are  $\xi_{imj} \sim \text{Gumbel}(0, 1)$ .
- At age  $a \ge 0$ , tastes of consumers who are aware of firm *i* are  $\sim$  Gumbel  $(\ln(\mu_i(a)), 1)$ .
  - Firms only choose  $\mu_{0,i} \equiv \mu_i(0) \ge 1$ , at age a = 0.
  - Law of motion for targeting:



ADV costs per firm (paid in units of final good)  $\rightarrow d(\theta, \mu_0) = \nu \theta^2 + \eta (\mu_0 - 1)^2$ , with  $\nu, \eta > 0$ .

### Traditional advertising:

- Choose contact rate of new customers,  $\theta > 0$ , constant over time and across firms.
- Determines evolution of awareness sets ("urn-ball" without replacement). Awareness Law of Motion

### 2 Targeted advertising:

- Recall  $\rightarrow$  Tastes for *population* of consumers are  $\xi_{imj} \sim \text{Gumbel}(0, 1)$ .
- At age  $a \ge 0$ , tastes of consumers who are aware of firm *i* are  $\sim$  Gumbel  $(\ln(\mu_i(a)), 1)$ .
  - Firms only choose  $\mu_{0,i} \equiv \mu_i(0) \ge 1$ , at age a = 0.
  - Law of motion for targeting:

$$\ln (\mu_{i}(a)) = \ln (\mu_{0,i}) \left(1 - \underbrace{s_{i}(a)}_{\text{Network}}\right), \quad \text{where } \underbrace{s_{i}(a) \equiv \sum_{A \ni i} \underbrace{\widehat{f}(a, A)}_{\text{Density of awareness set } A}}_{\text{Proportion of awareness sets}} \stackrel{\downarrow}{=} \sum_{n=1}^{N} \frac{n}{N} f_{n}(a)$$

ADV costs per firm (paid in units of final good)  $\rightarrow d(\theta, \mu_0) = \nu \theta^2 + \eta (\mu_0 - 1)^2$ , with  $\nu, \eta > 0$ .

"Urn-ball" logic

### Traditional advertising:

- Choose contact rate of new customers,  $\theta > 0$ , constant over time and across firms.
- Determines evolution of awareness sets ("urn-ball" without replacement). Awareness Law of Motion

### 2 Targeted advertising:

- Recall  $\rightarrow$  Tastes for *population* of consumers are  $\xi_{imj} \sim \text{Gumbel}(0, 1)$ .
- At age  $a \ge 0$ , tastes of consumers who are aware of firm *i* are  $\sim$  Gumbel  $(\ln(\mu_i(a)), 1)$ .
  - Firms only choose  $\mu_{0,i} \equiv \mu_i(0) \ge 1$ , at age a = 0.
  - Law of motion for targeting:

$$\ln (\mu_{i}(a)) = \ln (\mu_{0,i}) \left(1 - \underbrace{s_{i}(a)}_{\text{Network}}\right), \quad \text{where } \underbrace{s_{i}(a) \equiv \sum_{A \ni i} \underbrace{\widehat{f}(a, A)}_{\text{Density of awareness sets}} \stackrel{\downarrow}{=} \sum_{n=1}^{N} \frac{n}{N} f_{n}(a)$$

■ ADV costs per firm (paid in units of final good)  $\rightarrow d(\theta, \mu_0) = \nu \theta^2 + \eta (\mu_0 - 1)^2$ , with  $\nu, \eta > 0$ .

"Urn-ball"

•  $\xi$  distribution for **population** of consumers has mean  $0 = \ln(\mu)$ , i.e. an "undistorted" Gumbel with  $\mu = 1$ .



• At age a = 0, firm gets to draw from a distorted Gumbel with mean  $\mu_{0,i} > 1$  (chosen once-and-for-all).



■ As product category ages ( $a \uparrow$ ), firm's network saturates ( $s(a) \uparrow$ )  $\rightarrow$  Becomes "harder to distort" ( $\mu_i(a) \downarrow$ ).



• As  $a \to +\infty$ , every firm is in every awareness set:  $f_N(a) \to 1$  and  $s(a) \to 1$ , so  $\mu_i(a) \to 1$ .



# Equilibrium

Given real income  $\Omega_{jt}$ , price index  $P_{jt}$ , and nominal prices  $(\hat{p}_{imt})$  for  $i \in A_{mjt}$ :

**Extensive-margin:** Consumer *j* purchases from firm *i* and from no other firm  $i' \in A_{mit} \setminus \{i\}$  iff

$$\ln\left(\frac{\widehat{p}_{i'mt}}{\widehat{p}_{imt}}\right) > \sigma(\xi_{i'mj} - \xi_{imj}).$$

**2** Intensive-margin: If consumer *j* chooses firm  $i \in A_{mjt}$ , her demand is:

$$y_{imjt}^{d} = \overline{\Gamma}^{\kappa-1} e^{\sigma(\kappa-1)\xi_{imj}} \left(\frac{\widehat{\rho}_{imt}}{P_{jt}}\right)^{-\kappa} \Omega_{jt},$$

- In eq'm, each consumer purchases from only one firm in each product category (almost surely).
- For this one firm, intensive demand is downward-sloping,  $\left(\frac{\widehat{p}_{int}}{P_{it}}\right)^{-\kappa} \Omega_{jt}$ .

# Equilibrium I: Consumer Problem



# Equilibrium I: Consumer Problem



# Equilibrium I: Consumer Problem



# Equilibrium II: Firm Problem and Markups

- Focus on a *symmetric equilibrium* (in prices and targeting).
- **Targeting** is a demand shifter, sorting matters only through size of (non-empty) sets,  $\hat{n} \equiv |A|$ . Details



- Mechanism:
  - When product is young (a pprox 0), awareness sets are sparse  $\rightarrow$  EM price-elasticity low.
  - As  $a \uparrow$ , consumers sort into better options  $\rightarrow$  EM elasticity increases  $\rightarrow$  Competition intensifies  $\rightarrow \land(a) \downarrow$

# Equilibrium II: Firm Problem and Markups

- Focus on a *symmetric equilibrium* (in prices and targeting).
- **Targeting** is a demand shifter, sorting matters only through size of (non-empty) sets,  $\hat{n} \equiv |A|$ . **Details**



- Mechanism:
  - When product is young ( $a \approx 0$ ), awareness sets are sparse  $\rightarrow$  EM price-elasticity low.
  - As a↑, consumers sort into better options → EM elasticity increases → Competition intensifies → Λ(a)↓



11/17



Cavenaile, Celik, Perla and Roldan-Blanco



11/17



Cavenaile, Celik, Perla and Roldan-Blanco

# Equilibrium IV: Aggregation

- Stationary economy aggregates to a **Neoclassical Growth Model** with endogenous TFP:
  - Aggregate markup:

$$\Lambda \equiv \left(\int_{0}^{+\infty} \varphi(a) (\Lambda(a))^{-1} \, \mathrm{d}\Phi(a)\right)^{-1} \ge 1, \qquad \text{ where } \varphi(a) \equiv \frac{p(a)y(a)}{Y}$$

2 Income shares:

$$\frac{wL}{Y} = (1 - \alpha)\Lambda^{-1}; \qquad \qquad \frac{(r + \delta_K)K}{Y} = \alpha\Lambda^{-1}; \qquad \qquad \frac{\Pi}{Y} = 1 - \Lambda^{-1}$$

3 Aggregate output:



Nedge  $\Lambda^{-1} \leq 1$  on income shares summarizes all misallocation generated from markup dispersion.

# Equilibrium IV: Aggregation

- Stationary economy aggregates to a **Neoclassical Growth Model** with endogenous TFP:
  - Aggregate markup:

$$\Lambda \equiv \left(\int_0^{+\infty} \varphi(a) (\Lambda(a))^{-1} \, \mathrm{d}\Phi(a)\right)^{-1} \ge 1, \qquad \text{where } \varphi(a) \equiv \frac{p(a)y(a)}{Y}$$

2 Income shares:

$$\frac{wL}{Y} = (1 - \alpha)\Lambda^{-1}; \qquad \frac{(r + \delta_{\mathcal{K}})K}{Y} = \alpha\Lambda^{-1}; \qquad \frac{\Pi}{Y} = 1 - \Lambda^{-1}$$

3 Aggregate output:

$$\mathbf{Y} = \underbrace{z}_{\substack{\text{Physical Love-of-variety}}} \underbrace{\mathbf{M}_{\text{variety}}^{\frac{1}{\kappa-1}}}_{\text{Q addity}} \underbrace{\mathbf{Q}}_{\text{wedge}} \underbrace{\mathbf{\Lambda}_{\text{Aggregate Markup}}}_{\mathbf{Z} \equiv \text{Endogenous TFP}} \mathbf{K}^{\alpha} \mathbf{L}^{1-\alpha}, \text{ with } \mathbf{Q} \equiv \left[\int_{0}^{+\infty} \underbrace{(1 - f_{0}(a))}_{\text{Awareness}} \underbrace{\mu(a)^{\sigma(\kappa-1)}}_{\text{Targeting}} \underbrace{q(a)}_{\text{Sorting}} \mathbf{\Lambda}(a)^{1-\kappa} d\Phi(a)\right]^{\frac{1}{\kappa-1}}$$

■ Wedge  $\Lambda^{-1} \leq 1$  on income shares summarizes *all* misallocation generated from markup dispersion.

# **Application:**

The Rise of Targeted Advertising

# **Two Calibrations**

- **Goal:** Quantify effects of  $\uparrow$  targeting (rise in digital ADV in the 2000s)  $\rightarrow$  2 calibrations:  $\bigcirc$  Details
  - **1** "Early" calibration (2005)  $\rightarrow$  Low return of ADV targeting.
  - 2 "Late" calibration (2014)  $\rightarrow$  High return of ADV targeting (5 times higher, Farahat and Bailey (2012)).

**Digital ADV rises**  $\rightarrow$  Both contacting ( $\nu$ ) and targeting ( $\eta$ ) become cheaper, but targeting relatively more so:



# **Two Calibrations**

- **Goal:** Quantify effects of  $\uparrow$  targeting (rise in digital ADV in the 2000s)  $\rightarrow$  2 calibrations:  $\bigcirc$  Details
  - **1** "Early" calibration (2005)  $\rightarrow$  Low return of ADV targeting.
  - 2 "Late" calibration (2014)  $\rightarrow$  High return of ADV targeting (5 times higher, Farahat and Bailey (2012)).

| Parameter                     |                | Value  | Moment                          | Data   | Model  |
|-------------------------------|----------------|--------|---------------------------------|--------|--------|
| A. "Early" calibration (2005) |                |        |                                 |        |        |
| Product differentiation       | $\sigma$       | 0.4183 | Average markup (sales-weighted) | 0.4674 | 0.4658 |
| Category creation efficiency  | Z <sub>M</sub> | 0.1059 | Mass of categories (M)          | 1.0000 | 1.0000 |
| Contact rate cost             | $\nu$          | 0.0267 | Advertising share of GDP        | 0.0220 | 0.0220 |
| Targeting cost                | $\eta$         | 0.2527 | Return to targeting             | 0.0482 | 0.0482 |
| B. "Late" calibration (2014)  |                |        |                                 |        |        |
| Product differentiation       | $\sigma$       | 0.4099 | Average markup (sales-weighted) | 0.4850 | 0.4603 |
| Category creation efficiency  | Z <sub>M</sub> | 0.0999 | Mass of categories (M)          | 1.0000 | 1.0000 |
| Contact rate cost             | $\nu$          | 0.0229 | Advertising share of GDP        | 0.0224 | 0.0224 |
| Targeting cost                | $\eta$         | 0.0352 | Return to targeting             | 0.2129 | 0.2129 |

**Digital ADV rises**  $\rightarrow$  Both contacting ( $\nu$ ) and targeting ( $\eta$ ) become cheaper, but targeting relatively more so:

 $rac{\eta \, \mathrm{early}}{\nu \, \mathrm{early}} = \mathbf{9.5} \, \gg \, \mathbf{1.5} = rac{\eta \, \mathrm{late}}{\nu \, \mathrm{late}}$ 

# Implications of the Rise of Targeted Advertising

|              |   | 2005  | 2014  | % change |
|--------------|---|-------|-------|----------|
| Contact rate | θ | 1.924 | 1.853 | -3.7%    |
|              |   |       |       |          |
|              |   |       |       |          |
| Wage         | W | 2.087 | 2.205 | +5.7%    |
|              |   |       |       |          |
|              |   |       |       |          |
|              |   |       |       |          |
|              |   |       |       |          |
|              |   |       |       |          |
|              |   |       |       |          |
|              |   |       |       |          |

#### Since targeting is now relatively cheaper than contacting:

- Targeting  $\mu_0$  goes up strongly  $\longrightarrow$  Firms get better at finding customers with higher taste (match quality †).
- Contact rate  $\theta$  decreases slightly  $\rightarrow$  Firms find fewer new customers per unit of time (sorting  $\downarrow$ ).
- In net... Strong increase in welfare → Consumption ↑ by 4.9%, coming from...
  - ... higher aggregate quality (Q ↑)
  - $\blacksquare$  ... lower market power distortions ( $\Lambda \downarrow$ )

Cavenaile, Celik, Perla and Roldan-Blanco

# Implications of the Rise of Targeted Advertising

|                   |                                           | 2005  | 2014  | % change |
|-------------------|-------------------------------------------|-------|-------|----------|
| Contact rate      | $\theta$                                  | 1.924 | 1.853 | -3.7%    |
| Targeting rate    | $\mu_0$                                   | 1.230 | 2.088 | +69.8%   |
| Average targeting | $\int \mu(a)^{\sigma(\kappa-1)} d\Phi(a)$ | 0.023 | 0.101 | +339.1%  |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |
|                   |                                           |       |       |          |

■ Since targeting is now relatively cheaper than contacting:

- Targeting  $\mu_0$  goes up strongly  $\rightarrow$  Firms get better at finding customers with higher taste (match quality  $\uparrow$ ).
- Contact rate  $\theta$  decreases slightly  $\rightarrow$  Firms find fewer new customers per unit of time (sorting  $\downarrow$ ).

In net... Strong increase in welfare  $\rightarrow$  Consumption  $\uparrow$  by 4.9%, coming from...

- ... higher aggregate quality (Q ↑).
- $\blacksquare$  ... lower market power distortions ( $\Lambda \downarrow$ )

Cavenaile, Celik, Perla and Roldan-Blanco

# Implications of the Rise of Targeted Advertising

|                             |                                            | 2005  | 2014  | % change |
|-----------------------------|--------------------------------------------|-------|-------|----------|
| Contact rate                | θ                                          | 1.924 | 1.853 | -3.7%    |
| Targeting rate              | $\mu_0$                                    | 1.230 | 2.088 | +69.8%   |
| Average targeting           | $\int \mu(a)^{\sigma(\kappa-1)} d \Phi(a)$ | 0.023 | 0.101 | +339.1%  |
| Wage                        | W                                          | 2.087 | 2.205 | +5.7%    |
| Aggregate consumption       | С                                          | 2.977 | 3.123 | +4.9%    |
| Match quality               | Q                                          | 1.474 | 1.529 | +3.7%    |
| Aggregate markup            | Λ                                          | 1.466 | 1.460 | -0.4%    |
| Distortion-adjusted quality | QΛ                                         | 2.161 | 2.233 | +3.3%    |
| Output level                | Ŷ                                          | 4.589 | 4.829 | +5.2%    |
| Aggregate TFP               | Z                                          | 2.161 | 2.233 | +3.3%    |
|                             |                                            |       |       |          |

■ Since targeting is now relatively cheaper than contacting:

- Targeting  $\mu_0$  goes up strongly  $\rightarrow$  Firms get better at finding customers with higher taste (match quality  $\uparrow$ ).
- Contact rate  $\theta$  decreases slightly  $\rightarrow$  Firms find fewer new customers per unit of time (sorting  $\downarrow$ ).
- In net... Strong increase in welfare  $\rightarrow$  Consumption  $\uparrow$  by 4.9%, coming from...
  - $\blacksquare$  ... higher aggregate quality ( $Q \uparrow$ ).
  - ... lower market power distortions ( $\Lambda \downarrow$ ).

Cavenaile, Celik, Perla and Roldan-Blanco

More – Effects within product category

# **Counterfactual Experiments I**

- How did improvement in ADV technologies impact markups, product market dynamics and welfare?
- **Exercise:** Starting from 2014 economy ...
  - ... Both ADV cost parameters,  $\nu$  (contacting) and  $\eta$  (targeting), are set back to their 2005 values.
  - ... All other parameters are kept fixed at their 2014 calibrated values.

**Results:** If there had been no reduction in ADV costs  $\rightarrow$  Less targeting ( $\downarrow$  40.9%) and faster contact († 5.2%).

Negative effects:

2 Positive effects:

a ... see even would have accumulated taster ...+ Stronger competition for customers .... Markups () and a second seco

# **Counterfactual Experiments I**

- How did improvement in ADV technologies impact markups, product market dynamics and welfare?
- Exercise: Starting from 2014 economy ...
  - ... Both ADV cost parameters,  $\nu$  (contacting) and  $\eta$  (targeting), are set back to their 2005 values.
  - ... All other parameters are kept fixed at their 2014 calibrated values.

**Results:** If there had been no reduction in ADV costs  $\rightarrow$  Less targeting ( $\downarrow$  40.9%) and faster contact ( $\uparrow$  5.2%).

### 1 Negative effects:

... aggregate consumer-firm match quality Q would have worsened.

### 2 Positive effects:

- ${\scriptstyle \sf I}$  ... awareness would have accumulated faster ightarrow Stronger competition for customers ightarrow Markups  $\downarrow$
- $\blacksquare$  ... markup distortions  $\Lambda$  would have been lower o Profit share lower,  $(1 \Lambda^{-1})\downarrow$
- GE effects:
  - 1 ... There would have been more product varieties ( $M \uparrow$ ).
  - ... Welfare (per-product consumption) would have been higher (C/M ↑).

# **Counterfactual Experiments I**

- How did improvement in ADV technologies impact markups, product market dynamics and welfare?
- Exercise: Starting from 2014 economy ...
  - ... Both ADV cost parameters,  $\nu$  (contacting) and  $\eta$  (targeting), are set back to their 2005 values.
  - ... All other parameters are kept fixed at their 2014 calibrated values.

**Results:** If there had been no reduction in ADV costs  $\rightarrow$  Less targeting ( $\downarrow$  40.9%) and faster contact ( $\uparrow$  5.2%).

### 1 Negative effects:

■ ... aggregate consumer-firm match quality *Q* would have worsened.

### 2 Positive effects:

- $\blacksquare$  ... awareness would have accumulated faster  $\rightarrow$  Stronger competition for customers  $\rightarrow$  Markups  $\downarrow$
- ... markup distortions  $\Lambda$  would have been lower  $\rightarrow$  Profit share lower,  $(1 \Lambda^{-1}) \downarrow$
- GE effects:
  - 1 ... There would have been more product varieties ( $M \uparrow$ ).
  - **2** ... Welfare (per-product consumption) would have been higher (C/M  $\uparrow$ ).

|                             |                               | Early<br>(base) | Late<br>(base) | Late<br>(cf) | Change<br>(wrt late base) |
|-----------------------------|-------------------------------|-----------------|----------------|--------------|---------------------------|
| Contact rate                | $\theta$                      | 1.924           | 1.853          | 1.949        | +5.16%                    |
| Targeting rate              | $\mu_0$                       | 1.230           | 2.088          | 1.236        | -40.81%                   |
| Consumption share           | <b>C</b> /Y                   | 0.649           | 0.647          | 0.650        | +0.56%                    |
| Advertising share           | <b>D</b> / <b>Y</b>           | 0.022           | 0.022          | 0.021        | -5.44%                    |
| Profit share                | $oldsymbol{\Pi}/oldsymbol{Y}$ | 0.318           | 0.315          | 0.314        | -0.46%                    |
| Mass of categories          | М                             | 1.000           | 1.000          | 1.183        | +18.32%                   |
| Aggregate consumption       | С                             | 2.977           | 3.123          | 3.770        | +20.72%                   |
| Normalized consumption      | <b>C</b> / <b>M</b>           | 2.977           | 3.123          | 3.186        | +2.03%                    |
| Match quality               | Q                             | 1.474           | 1.529          | 1.462        | -4.40%                    |
| Aggregate markup            | Λ                             | 1.466           | 1.460          | 1.457        | -0.24%                    |
| Distortion-adjusted quality | QΛ                            | 2.161           | 2.233          | 2.130        | -4.60%                    |
| Output level                | Y                             | 4.589           | 4.829          | 5.798        | +20.05%                   |
| Aggregate TFP               | Ζ                             | 2.161           | 2.233          | 2.521        | +12.88%                   |

# Conclusion

Study implications of targeted ADV for product market dynamics and macroeconomic aggregates.

Theory:

- Consumers are unaware of some products.
- ADV affects: (i) speed at which new consumers are contacted; (ii) prob. of contacting high-valuation consumers.

### Application:

- Rise in targeting driven by a decrease in both cost of targeting and cost of contacting.
- Generates an increase in welfare (through better matches).
- **Counterfactual:** Had rise in targeting not been accompanied by technological change...
  - ... match quality would have been lower.
  - ... still, welfare would have been higher, due to lower markup distortions.

# Thank you!

# Appendix

### Appendix: Evolution of Awareness

- In eq'm, it is sufficient to keep track of the size of awareness sets as a function of product category age.
  - Let  $f_n(a)$  be the proportion of consumers aware of  $n \in \{0, 1, ..., N\}$  firms at age a > 0.
  - We assume  $\vec{f}(a) \equiv [f_0(a), f_1(a), \dots, f_N(a)]^\top \in [0, 1]^{N+1}$  evolves according to:

$$\frac{\partial \vec{f}(a)}{\partial a} = \vec{f}(a) \cdot \mathcal{Q}$$

with

Intuitively:

- Each consumer has an intensity  $\theta > 0$  (the *contact rate*) of becoming aware of a particular firm in the category.
- When the consumer is aware of  $n \le N$  firms, the intensity with which she becomes aware of a new firm is  $\frac{N-n}{N}\theta$ .



#### 1 Awareness:

- f<sub>n</sub>(a)  $\equiv$  Share of consumers aware of n = 0, 1, ..., N firms at age a.
- Thus, the more consumers are aware of the existence of product category *m*, the higher is demand (for all firms).

### 2 Targeting:

Targeting shifts demand, until network eventually becomes saturated ( $f_N(a) \rightarrow 1$ , so  $s(a) \rightarrow 1$  and  $\mu(a) \rightarrow 1$ ).

### Downward-sloping demand:

Intensive-margin component  $\rightarrow$  Current customers of firm demand more intensively if  $p \downarrow$  and/or  $\Omega \uparrow$ .

### 4 Sorting:

- Extensive-margin component  $\rightarrow$  Consumer sorting, where  $\hat{n}$  denotes size of (non-empty) awareness set.
- Larger awareness sets  $\Rightarrow$  Consumers have more scope to sort toward better products.  $\Rightarrow$  Sorting  $\uparrow$

#### Cavenaile, Celik, Perla and Roldan-Blanco



#### 1 Awareness:

- $f_n(a) \equiv$  Share of consumers aware of n = 0, 1, ..., N firms at age *a*.
- Thus, the more consumers are aware of the existence of product category m, the higher is demand (for all firms).

#### 2 Targeting:

• Targeting shifts demand, until network eventually becomes saturated ( $f_N(a) 
ightarrow 1$ , so s(a) 
ightarrow 1 and  $\mu(a) 
ightarrow 1$ ).

### Downward-sloping demand:

Intensive-margin component  $\rightarrow$  Current customers of firm demand more intensively if  $\rho \downarrow$  and/or  $\Omega \uparrow$ .

### 4 Sorting:

- Extensive-margin component  $\rightarrow$  Consumer sorting, where  $\hat{n}$  denotes size of (non-empty) awareness set.
- Larger awareness sets  $\Rightarrow$  Consumers have more scope to sort toward better products.  $\Rightarrow$  Sorting  $\uparrow$

#### Cavenaile, Celik, Perla and Roldan-Blanco

Back

**Firm demand.** In a symmetric equilibrium with  $p(a) = p_{-i}$  and  $\mu(a) = \mu_{-i}$ , firm *i*'s demand function is:



#### 1 Awareness:

- $f_n(a) \equiv$  Share of consumers aware of n = 0, 1, ..., N firms at age a.
- Thus, the more consumers are aware of the existence of product category m, the higher is demand (for all firms).

### 2 Targeting:

■ Targeting shifts demand, until network eventually becomes saturated ( $f_N(a) \rightarrow 1$ , so  $s(a) \rightarrow 1$  and  $\mu(a) \rightarrow 1$ ).

### Downward-sloping demand:

Intensive-margin component  $\rightarrow$  Current customers of firm demand more intensively if  $p \downarrow$  and/or  $\Omega \uparrow$ .

### 4 Sorting:

- Extensive-margin component  $\rightarrow$  Consumer sorting, where  $\hat{n}$  denotes size of (non-empty) awareness set.
- Larger awareness sets  $\Rightarrow$  Consumers have more scope to sort toward better products.  $\Rightarrow$  Sorting  $\uparrow$

Cavenaile, Celik, Perla and Roldan-Blanco

Back



#### 1 Awareness:

- $f_n(a) \equiv$  Share of consumers aware of n = 0, 1, ..., N firms at age a.
- Thus, the more consumers are aware of the existence of product category *m*, the higher is demand (for all firms).

Downward sloping demand

#### 2 Targeting:

■ Targeting shifts demand, until network eventually becomes saturated ( $f_N(a) \rightarrow 1$ , so  $s(a) \rightarrow 1$  and  $\mu(a) \rightarrow 1$ ).

#### 3 Downward-sloping demand:

Intensive-margin component  $\rightarrow$  Current customers of firm demand more intensively if  $p \downarrow$  and/or  $\Omega \uparrow$ .

#### 4 Sorting:

- **Extensive-margin** component  $\rightarrow$  Consumer sorting, where  $\hat{n}$  denotes size of (non-empty) awareness set.
- Larger awareness sets ⇒ Consumers have more scope to sort toward better products. ⇒ Sorting ↑

Back

Firm demand. In a symmetric equilibrium with  $p(a) = p_{-i}$  and  $\mu(a) = \mu_{-i}$ , firm *i*'s demand function is:  $y_t(a) = \underbrace{(1 - f_0(a))}_{\text{Awareness}} \underbrace{\mu(a)^{\sigma(\kappa-1)}}_{\text{Targeting}} \underbrace{p(a)^{-\kappa} \frac{\Omega_t}{N}}_{\substack{\text{Downward-} \\ \text{sloping} \\ \text{demand}}} \underbrace{\mathbb{E}_a \left[ \widehat{n}^{\sigma(\kappa-1)} \right]}_{\text{Sorting} \equiv q(a)}$ 

#### 1 Awareness:

- $f_n(a) \equiv$  Share of consumers aware of n = 0, 1, ..., N firms at age *a*.
- Thus, the more consumers are aware of the existence of product category *m*, the higher is demand (for all firms).

### 2 Targeting:

■ Targeting shifts demand, until network eventually becomes saturated ( $f_N(a) \rightarrow 1$ , so  $s(a) \rightarrow 1$  and  $\mu(a) \rightarrow 1$ ).

### **3** Downward-sloping demand:

Intensive-margin component  $\rightarrow$  Current customers of firm demand more intensively if  $p \downarrow$  and/or  $\Omega \uparrow$ .

### 4 Sorting:

- **Extensive-margin** component  $\rightarrow$  Consumer sorting, where  $\hat{n}$  denotes size of (non-empty) awareness set.
- Larger awareness sets ⇒ Consumers have more scope to sort toward better products. ⇒ Sorting ↑

Cavenaile, Celik, Perla and Roldan-Blanco

# Appendix: Firm Demand (2/2)

■ In an equilibrium with symmetric strategies,  $\vec{p}_{-i} = \{p_{-i}, \dots, p_{-i}\}$  and  $\vec{\mu}_{-i} = \{\mu_{-i}, \dots, \mu_{-i}\}$ , demand is:

$$y(a,p) = (1 - f_0(a))\mu(a)^{\sigma(\kappa-1)}p^{-\kappa}\frac{\Omega_t}{N}\mathbb{E}_a\left[\widehat{n}\left(1 + (\widehat{n} - 1)\frac{\mu_{-i}}{\mu(a)}\left(\frac{p_{-i}}{p}\right)^{-\frac{1}{\sigma}}\right)^{\sigma(\kappa-1)-1}\right]$$

Sorting component of demand

■ Targeting  $\mu(a) = \mu_0^{1-s(a)}$  affects demand in two ways:

- **1** Shifts idiosyncratic demand conditional on purchasing,  $\mu(a)^{\sigma(\kappa-1)-1}$ .
- 2 Shifts market power relative to competitors,  $\frac{\mu_{-i}}{\mu_{(a)}}$ .
- In a symmetric equilibrium,  $\mu(a) = \mu_{-i}$ , only the first effect exists.

Bac

Appendix: Closing the Model (1/2)

• Thanks to aggregation  $\rightarrow$  Can solve for consumption-savings problem as if it came from representative HH.

$$\max_{\boldsymbol{c}_{t},\boldsymbol{l}_{t}^{K},\boldsymbol{l}_{t}^{M}} \int_{0}^{+\infty} e^{-\rho t} \frac{\boldsymbol{c}_{t}^{1-\gamma}}{1-\gamma} dt \quad \text{s.t.} \begin{cases} \dot{\boldsymbol{K}}_{t} = \boldsymbol{I}_{t}^{K} - \delta_{K} \boldsymbol{K}_{t} \\ \dot{\boldsymbol{A}}_{t} = \underbrace{\boldsymbol{r}_{t} \boldsymbol{A}_{t}}_{\text{Financial}} + \underbrace{\boldsymbol{W}_{t}}_{\text{Labor}} + \underbrace{(\boldsymbol{r}_{t} + \delta_{K}) \boldsymbol{K}_{t}}_{\text{Returns from}} - \underbrace{(\boldsymbol{C}_{t} + \boldsymbol{I}_{t}^{K} + \boldsymbol{I}_{t}^{M})}_{\text{Consumption and invest-ment expenditures}} + \underbrace{\boldsymbol{Z}_{M} \boldsymbol{I}_{t}^{M} \boldsymbol{V}_{t}^{0}}_{\text{Category creation}} \end{cases}$$

Household trades in firm shares:

$$\boldsymbol{A}_{t} = \boldsymbol{M}_{t} \int_{0}^{+\infty} V_{t}(a) \, \mathrm{d}\Phi_{t}(a), \quad \text{where } V_{t}(a) \equiv \underbrace{\int_{t}^{+\infty} e^{-\int_{t}^{s} (r_{\tau} + \delta_{M}) \mathrm{d}\tau} N \pi_{s}(a + s - t) \mathrm{d}s}_{V_{t}(a)}.$$

Value of a product category at age  $a \ge 0$ 

- Age-zero advertising choices:
  - When new product category is created (a = 0), blueprint owner chooses ( $\theta, \mu_0$ ), common to all firms:

$$\boldsymbol{V}_{t}^{0} \equiv \max_{\theta,\mu_{0}} \left\{ V_{t}(0) - N \left( \nu \theta^{2} + \eta (\mu_{0} - 1)^{2} \right) \right\}$$

$$\bullet \text{ Optimal choices } \rightarrow \theta_{t}^{*} = \frac{1}{2N\nu} \frac{\partial V_{t}(0)}{\partial \theta} \text{ and } \mu_{0,t}^{*} = 1 + \frac{1}{2N\eta} \frac{\partial V_{t}(0)}{\partial \mu_{0}}.$$

Appendix: Closing the Model (2/2)

- A few more equations to close the model:
  - 1 Euler equation:

$$\frac{\dot{\boldsymbol{C}}_t}{\boldsymbol{C}_t} = \frac{\boldsymbol{r}_t - \rho}{\gamma}$$

2 Resource constraint:

$$\boldsymbol{Y}_{t} = \boldsymbol{C}_{t} + \boldsymbol{I}_{t}^{K} + \boldsymbol{I}_{t}^{M} + \boldsymbol{z}_{M} \boldsymbol{I}_{t}^{M} N \left( \nu \theta^{2} + \eta (\mu_{0} - 1)^{2} \right)$$

3 Product category free entry condition:

$$z_M V_t^0 \le 1$$
 with equality if, and only if,  $I_t^M > 0$ 

Invariant distribution of product categories:

$$\frac{\mathrm{d}\Phi(a)}{\mathrm{d}a} = 1 - e^{-\delta_M a}$$

# Appendix: Calibration

### ■ Parameters $(N, z, \rho, \kappa, \alpha, \gamma, \delta_K, \delta_M)$ are set externally.

| Parameter                             |            | Value | Source/Target                            |
|---------------------------------------|------------|-------|------------------------------------------|
| Number of firms per product category  | Ν          | 10    |                                          |
| Firm-level productivity               | Ζ          | 1     |                                          |
| Connection destruction rate           | ζ          | 0     |                                          |
| Time discount rate                    | ρ          | 0.04  | 4% annual interest rate                  |
| Cross elasticity of substitution      | $\kappa$   | 2     | Oberfield and Raval (2021)               |
| Capital share of non-profit income    | $\alpha$   | 0.33  | Capital share of non-profit income       |
| Coefficient of relative risk aversion | $\gamma$   | 2     | Havranek et al. (2015)                   |
| Capital depreciation                  | δκ         | 0.069 | Celik et al. (2022) and U.S. NIPA tables |
| Product destruction rate              | $\delta_M$ | 0.09  | Broda and Weinstein (2010)               |

• Parameters  $(\sigma, Z_M, \nu, \eta)$  are calibrated internally  $\rightarrow 4$  targets for each calibration ("early" and "late"):

- **1** Mass of categories  $\rightarrow$  Normalized to  $M_t = 1$  in both calibrations (pins down  $z_M$ ).
- 2 Average markup  $\rightarrow$  From 46.7% (2005) to 48.5% (2014), using estimates from De Loecker et al. (2020).
- 3 Advertising share of GDP  $\rightarrow$  From 2.20% (2005) to 2.13% (2014), using data from Greenwood et al. (2021).
- 4 Return to targeting:
  - Farahat and Bailey (2012)  $\rightarrow$  Targeting  $\uparrow$  click-through rate for brands by 79%.
  - Share of digital in total ADV rose from 6% (2005) to 30% (2014).
  - Adjusting for this, return to targeting  $\rightarrow$  From 0.048 (2005) to 0.213 (2014)  $\rightarrow$  A nearly 5-fold increase.

### Appendix: Rise of Targeted Advertising (1/2)



- Awareness spreads more slowly.
- Targeting is much higher, especially at early stages of the product category.
- Firms charge higher prices throughout.
- $\blacksquare$  Demand and profits  $\uparrow$  early.

Components of demand (in logs):

```
\begin{split} \mathsf{n}(y) &= \ln(1-f_0) \\ &+ (\sigma(\kappa-1)-1)(1-s)\ln(\mu_0) \\ &+ \ln\left(\Omega/N\right) - \kappa\ln(p(a)) \\ &+ \ln\left[\mathbb{E}_a(\widehat{n}^{\sigma(\kappa-1)-1})\right] \end{split}
```

where  $s = \frac{1}{N} \sum_{n=1}^{N} nf_n(a)$  [saturation]

### Appendix: Rise of Targeted Advertising (1/2)



Awareness spreads more slowly.

- Targeting is much higher, especially at early stages of the product category.
- Firms charge higher prices throughout.

■ Demand and profits ↑ early.

Components of demand (in logs):

$$\begin{split} \mathbf{h}(\mathbf{y}) &= \ln(1 - f_0) \\ &+ (\sigma(\kappa - 1) - 1)(1 - s)\ln(\mu_0) \\ &+ \ln\left(\Omega/N\right) - \kappa\ln(p(a)) \\ &+ \ln\left[\mathbb{E}_a(\widehat{n}^{\sigma(\kappa - 1) - 1})\right] \end{split}$$

where  $s = \frac{1}{N} \sum_{n=1}^{N} nf_n(a)$  [saturation].

Cavenaile, Celik, Perla and Roldan-Blanco



# Appendix: Counterfactual Experiments (Full Table)

|                              |                                  | Early<br>(base) | Late<br>(base) | Late<br>(cf) | Change<br>(wrt late base) |
|------------------------------|----------------------------------|-----------------|----------------|--------------|---------------------------|
| A. Advertising and Markups   |                                  |                 |                |              |                           |
| Contact rate                 | $\theta$                         | 1.924           | 1.853          | 1.949        | +5.16%                    |
| Targeting rate               | $\mu_0$                          | 1.230           | 2.088          | 1.236        | -40.81%                   |
| B. GDP Shares                |                                  |                 |                |              |                           |
| Consumption share            | <b>C</b> /Y                      | 0.649           | 0.647          | 0.650        | +0.56%                    |
| Advertising share            | <b>D</b> / <b>Y</b>              | 0.022           | 0.022          | 0.021        | -5.44%                    |
| Category creation inv. share | $I^M/Y$                          | 0.185           | 0.186          | 0.184        | -1.44%                    |
| Capital investment share     | <b>Ι</b> <sup>κ</sup> / <b>Υ</b> | 0.144           | 0.144          | 0.145        | +0.21%                    |
| Profit share                 | $oldsymbol{\Pi}/oldsymbol{Y}$    | 0.318           | 0.315          | 0.314        | -0.46%                    |
| C. Aggregates                |                                  |                 |                |              |                           |
| Wage                         | W                                | 2.087           | 2.205          | 2.653        | +20.31%                   |
| Mass of categories           | М                                | 1.000           | 1.000          | 1.183        | +18.32%                   |
| Aggregate consumption        | С                                | 2.977           | 3.123          | 3.770        | +20.72%                   |
| Normalized consumption       | С/М                              | 2.977           | 3.123          | 3.186        | +2.03%                    |
| Match quality                | Q                                | 1.474           | 1.529          | 1.462        | -4.40%                    |
| Aggregate markup             | Λ                                | 1.466           | 1.460          | 1.457        | -0.24%                    |
| Distortion-adjusted quality  | QΛ                               | 2.161           | 2.233          | 2.130        | -4.60%                    |
| Output level                 | Ŷ                                | 4.589           | 4.829          | 5.798        | +20.05%                   |
| Aggregate TFP                | Ζ                                | 2.161           | 2.233          | 2.521        | +12.88%                   |

# Appendix: Other Counterfactual Experiments

|                              |                                  | (1)             | (2)            | (3)                              | (4)               | (5)                 | (6)               | (7)                  | (8)               |
|------------------------------|----------------------------------|-----------------|----------------|----------------------------------|-------------------|---------------------|-------------------|----------------------|-------------------|
|                              |                                  | Early<br>(base) | Late<br>(base) | Late $(\nu_{2005}, \eta_{2005})$ | Change<br>wrt (2) | Late $(\nu_{2005})$ | Change<br>wrt (2) | Late $(\eta_{2005})$ | Change<br>wrt (2) |
| A. Advertising and markups   |                                  |                 |                |                                  |                   |                     |                   |                      |                   |
| Contact rate                 | $\theta$                         | 1.924           | 1.853          | 1.949                            | +5.16%            | 1.748               | -5.66%            | 2.066                | +11.47%           |
| Targeting rate               | $\mu_0$                          | 1.230           | 2.088          | 1.236                            | -40.81%           | 2.118               | +1.46%            | 1.227                | -41.22%           |
| B. Shares of GDP             |                                  |                 |                |                                  |                   |                     |                   |                      |                   |
| Consumption share            | <b>C</b> / <b>Y</b>              | 0.649           | 0.647          | 0.650                            | +0.56%            | 0.647               | +0.00%            | 0.650                | +0.53%            |
| Advertising share            | <b>D</b> / <b>Y</b>              | 0.022           | 0.022          | 0.021                            | -5.44%            | 0.023               | +3.97%            | 0.020                | -8.84%            |
| Category creation inv. share | $I^M/Y$                          | 0.185           | 0.186          | 0.184                            | -1.44%            | 0.186               | -0.42%            | 0.185                | -1.00%            |
| Capital investment share     | <b>Ι</b> <sup>κ</sup> / <b>Υ</b> | 0.144           | 0.144          | 0.145                            | +0.21%            | 0.144               | -0.09%            | 0.145                | +0.29%            |
| Profit share                 | $oldsymbol{\Pi}/oldsymbol{Y}$    | 0.318           | 0.315          | 0.314                            | -0.46%            | 0.316               | +0.21%            | 0.313                | -0.64%            |
| C. Economic aggregates       |                                  |                 |                |                                  |                   |                     |                   |                      |                   |
| Wage                         | W                                | 2.087           | 2.205          | 2.653                            | +20.31%           | 2.272               | +3.04%            | 2.552                | +15.74%           |
| Mass of categories           | М                                | 1.000           | 1.000          | 1.183                            | +18.32%           | 1.027               | +2.70%            | 1.143                | +14.25%           |
| Aggregate consumption        | С                                | 2.977           | 3.123          | 3.770                            | +20.72%           | 3.221               | +3.14%            | 3.623                | +16.02%           |
| Normalized consumption       | C/M                              | 2.977           | 3.123          | 3.186                            | +2.03%            | 3.136               | +0.42%            | 3.171                | +1.55%            |
| Match quality                | Q                                | 1.474           | 1.529          | 1.462                            | -4.40%            | 1.519               | -0.67%            | 1.476                | -3.51%            |
| Distortion-adjusted quality  | QΛ                               | 2.161           | 2.233          | 2.130                            | -4.60%            | 2.220               | -0.58%            | 2.148                | -3.79%            |
| Output level                 | Ŷ                                | 4.589           | 4.829          | 5.798                            | +20.05%           | 4.981               | +3.14%            | 5.574                | +15.41%           |
| Aggregate TFP                | Z                                | 2.161           | 2.233          | 2.521                            | +12.88%           | 2.280               | +2.11%            | 2.455                | +9.92%            |

Cavenaile, Celik, Perla and Roldan-Blanco

. ▶ Back